Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
2.
Bioessays ; : e2300218, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616332

ABSTRACT

Dietary methionine restriction (MR) is associated with a spectrum of health-promoting benefits. Being conducive to prevention of chronic diseases and extension of life span, MR can activate integrated responses at metabolic, transcriptional, and physiological levels. However, how the mitochondria of MR influence metabolic phenotypes remains elusive. Here, we provide a summary of cellular functions of methionine metabolism and an overview of the current understanding of effector mechanisms of MR, with a focus on the aspect of mitochondria-mediated responses. We propose that mitochondria can sense and respond to MR through a modulatory role of lipoylation, a mitochondrial protein modification sensitized by MR.

3.
Sci Bull (Beijing) ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38423871

ABSTRACT

Diabetic retinopathy (DR) is the leading cause of blindness among the working-age population. Although controlling blood glucose levels effectively reduces the incidence and development of DR to less than 50%, there are currently no diagnostic biomarkers or effective treatments for DR development in glucose-well-controlled diabetic patients (GW-DR). In this study, we established a prospective GW-DR cohort by strictly adhering to glycemic control guidelines and maintaining regular retinal examinations over a median 2-year follow-up period. The discovery cohort encompassed 71 individuals selected from a pool of 292 recruited diabetic patients at baseline, all of whom consistently maintained hemoglobin A1c (HbA1c) levels below 7% without experiencing hypoglycemia. Within this cohort of 71 individuals, 21 subsequently experienced new-onset GW-DR, resulting in an incidence rate of 29.6%. In the validation cohort, we also observed a significant GW-DR incidence rate of 17.9%. Employing targeted metabolomics, we investigated the metabolic characteristics of serum in GW-DR, revealing a significant association between lower levels of ethanolamine and GW-DR risk. This association was corroborated in the validation cohort, exhibiting superior diagnostic performance in distinguishing GW-DR from diabetes compared to the conventional risk factor HbA1c, with AUCs of 0.954 versus 0.506 and 0.906 versus 0.521 in the discovery and validation cohorts, respectively. Furthermore, in a streptozotocin (STZ)-induced diabetic rat model, ethanolamine attenuated diabetic retinal inflammation, accompanied by suppression of microglial diacylglycerol (DAG)-dependent protein kinase C (PKC) pathway activation. In conclusion, we propose that ethanolamine is a potential biomarker and represents a viable biomarker-based therapeutic option for GW-DR.

4.
Nat Cell Biol ; 26(2): 278-293, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38302721

ABSTRACT

Lipids are indispensable for energy storage, membrane structure and cell signalling. However, dynamic changes in various categories of endogenous lipids in mammalian early embryonic development have not been systematically characterized. Here we comprehensively investigated the dynamic lipid landscape during mouse and human early embryo development. Lipid signatures of different developmental stages are distinct, particularly for the phospholipid classes. We highlight that the high degree of phospholipid unsaturation is a conserved feature as embryos develop to the blastocyst stage. Moreover, we show that lipid desaturases such as SCD1 are required for in vitro blastocyst development and blastocyst implantation. One of the mechanisms is through the regulation of unsaturated fatty-acid-mediated fluidity of the plasma membrane and apical proteins and the establishment of apical-basal polarity during development of the eight-cell embryo to the blastocyst. Overall, our study provides an invaluable resource about the remodelling of the endogenous lipidome in mammalian preimplantation embryo development and mechanistic insights into the regulation of embryogenesis and implantation by lipid unsaturation.


Subject(s)
Lipid Metabolism , Lipidomics , Pregnancy , Humans , Female , Mice , Animals , Embryo, Mammalian/metabolism , Embryonic Development/physiology , Blastocyst/metabolism , Phospholipids/metabolism , Mammals
5.
Int J Biol Sci ; 20(2): 569-584, 2024.
Article in English | MEDLINE | ID: mdl-38169625

ABSTRACT

Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD). Mitochondrial dysfunction in renal tubules, occurring early in the disease, is linked to the development of DKD, although the underlying pathways remain unclear. Here, we examine diabetic human and mouse kidneys, and HK-2 cells exposed to high glucose, to show that high glucose disrupts mitochondria-associated endoplasmic reticulum membrane (MAM) and causes mitochondrial fragmentation. We find that high glucose conditions increase mitogen-activated protein kinase 1(MAPK1), a member of the MAP kinase signal transduction pathway, which in turn lowers the level of phosphofurin acidic cluster sorting protein 2 (PACS-2), a key component of MAM that tethers mitochondria to the ER. MAPK1-induced disruption of MAM leads to mitochondrial fragmentation but this can be rescued in HK-2 cells by increasing PACS-2 levels. Functional studies in diabetic mice show that inhibition of MAPK1 increases PACS-2 and protects against the loss of MAM and the mitochondrial fragmentation. Taken together, these results identify the MAPK1-PACS-2 axis as a key pathway to therapeutically target as well as provide new insights into the pathogenesis of DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Mitochondrial Diseases , Mice , Humans , Animals , Diabetes Mellitus, Experimental/complications , Mitogen-Activated Protein Kinase 1 , Glucose
6.
Nat Cell Biol ; 26(2): 219-234, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38253667

ABSTRACT

Lysosomal storage disorders (LSDs), which are characterized by genetic and metabolic lysosomal dysfunctions, constitute over 60 degenerative diseases with considerable health and economic burdens. However, the mechanisms driving the progressive death of functional cells due to lysosomal defects remain incompletely understood, and broad-spectrum therapeutics against LSDs are lacking. Here, we found that various gene abnormalities that cause LSDs, including Hexb, Gla, Npc1, Ctsd and Gba, all shared mutual properties to robustly autoactivate neuron-intrinsic cGAS-STING signalling, driving neuronal death and disease progression. This signalling was triggered by excessive cytoplasmic congregation of the dsDNA and DNA sensor cGAS in neurons. Genetic ablation of cGAS or STING, digestion of neuronal cytosolic dsDNA by DNase, and repair of neuronal lysosomal dysfunction alleviated symptoms of Sandhoff disease, Fabry disease and Niemann-Pick disease, with substantially reduced neuronal loss. We therefore identify a ubiquitous mechanism mediating the pathogenesis of a variety of LSDs, unveil an inherent connection between lysosomal defects and innate immunity, and suggest a uniform strategy for curing LSDs.


Subject(s)
Lysosomal Storage Diseases , Niemann-Pick Disease, Type C , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/metabolism , Lysosomal Storage Diseases/pathology , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/pathology , Lysosomes/metabolism , Immunity, Innate , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
7.
Nat Commun ; 14(1): 2504, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37130856

ABSTRACT

Methionine restriction (MR) provides metabolic benefits in many organisms. However, mechanisms underlying the MR-induced effect remain incompletely understood. Here, we show in the budding yeast S. cerevisiae that MR relays a signal of S-adenosylmethionine (SAM) deprivation to adapt bioenergetic mitochondria to nitrogenic anabolism. In particular, decreases in cellular SAM constrain lipoate metabolism and protein lipoylation required for the operation of the tricarboxylic acid (TCA) cycle in the mitochondria, leading to incomplete glucose oxidation with an exit of acetyl-CoA and α-ketoglutarate from the TCA cycle to the syntheses of amino acids, such as arginine and leucine. This mitochondrial response achieves a trade-off between energy metabolism and nitrogenic anabolism, which serves as an effector mechanism promoting cell survival under MR.


Subject(s)
Amino Acids , Methionine , Amino Acids/metabolism , Methionine/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Lipoylation , Mitochondria/metabolism , Racemethionine/metabolism
8.
Front Chem ; 11: 1166313, 2023.
Article in English | MEDLINE | ID: mdl-37065823

ABSTRACT

Spatiotemporal dynamics of small-molecule metabolites have gained increasing attention for their essential roles in deciphering the fundamental machinery of life. However, subcellular-level regulatory mechanisms remain less studied, particularly due to a lack of tools to track small-molecule metabolites. To address this challenge, we developed high-resolution stimulated Raman scattering (SRS) imaging of a genetically engineered model (GEM) to map metabolites in subcellular resolution. As a result, an unexpected regulatory mechanism of a critical metabolite, sterol, was discovered in yeast by amplifying the strength of vibrational imaging by genetic modulation. Specifically, isozymes of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) were evident to promote ergosterol distribution to distinct subcellular locations, where ergosterol was enriched by a local HMGR-directed synthesis. The heterogeneity of this expression pattern thus provides new insights into sterol metabolism and related disease treatment strategies. These findings demonstrate SRS-GEM as a promising platform for new possibilities in investigating metabolic regulation, disease mechanisms, and biopharmaceutical research.

9.
Mol Cell ; 82(24): 4700-4711.e12, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36384136

ABSTRACT

Maintenance of energy level to drive movements and material exchange with the environment is a basic principle of life. AMP-activated protein kinase (AMPK) senses energy level and is a major regulator of cellular energy responses. The gamma subunit of AMPK senses elevated ratio of AMP to ATP and allosterically activates the alpha catalytic subunit to phosphorylate downstream effectors. Here, we report that knockout of AMPKγ, but not AMPKα, suppressed phosphorylation of eukaryotic translation elongation factor 2 (eEF2) induced by energy starvation. We identified PPP6C as an AMPKγ-regulated phosphatase of eEF2. AMP-bound AMPKγ sequesters PPP6C, thereby blocking dephosphorylation of eEF2 and thus inhibiting translation elongation to preserve energy and to promote cell survival. Further phosphoproteomic analysis identified additional targets of PPP6C regulated by energy stress in an AMPKγ-dependent manner. Thus, AMPKγ senses cellular energy availability to regulate not only AMPKα kinase, but also PPP6C phosphatase and possibly other effectors.


Subject(s)
AMP-Activated Protein Kinases , Protein Biosynthesis , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Phosphorylation , Peptide Elongation Factor 2/metabolism
10.
STAR Protoc ; 3(4): 101769, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36240059

ABSTRACT

We describe a protocol for measuring phospholipid class and fatty acid composition in the budding yeast Saccharomyces cerevisiae using a liquid chromatography-mass spectrometry (LC-MS)-based approach. We compile a mass spectral-retention time library verified for major phospholipids in the budding yeast and showcase the profiling process of phospholipid compositions in mutants with defective syntheses of phosphatidylethanolamine (PE) and phosphatidylcholine (PC). We further provide methods for extracting and quantifying phospholipids in mammalian systems. For complete details on the use and execution of this protocol, please refer to Fang et al. (2022).


Subject(s)
Phospholipids , Saccharomyces cerevisiae , Animals , Phospholipids/chemistry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Fatty Acids , Mammals
11.
Nat Commun ; 13(1): 3486, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35710796

ABSTRACT

Mitochondria generate ATP and play regulatory roles in various cellular activities. Cancer cells often exhibit fragmented mitochondria. However, the underlying mechanism remains elusive. Here we report that a mitochondrial protein FUN14 domain containing 2 (FUNDC2) is transcriptionally upregulated in primary mouse liver tumors, and in approximately 40% of human hepatocellular carcinoma (HCC). Importantly, elevated FUNDC2 expression inversely correlates with patient survival, and its knockdown inhibits liver tumorigenesis in mice. Mechanistically, the amino-terminal region of FUNDC2 interacts with the GTPase domain of mitofusin 1 (MFN1), thus inhibits its activity in promoting fusion of outer mitochondrial membrane. As a result, loss of FUNDC2 leads to mitochondrial elongation, decreased mitochondrial respiration, and reprogrammed cellular metabolism. These results identified a mechanism of mitochondrial fragmentation in cancer through MFN1 inhibition by FUNDC2, and suggested FUNDC2 as a potential therapeutic target of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , GTP Phosphohydrolases/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Mitochondrial Dynamics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/metabolism
12.
Front Med (Lausanne) ; 9: 819311, 2022.
Article in English | MEDLINE | ID: mdl-35615098

ABSTRACT

Background: Diabetic kidney disease (DKD) is the primary cause of end-stage renal disease, raising a considerable burden worldwide. Recognizing novel biomarkers by metabolomics can shed light on new biochemical insight to benefit DKD diagnostics and therapeutics. We hypothesized that serum metabolites can serve as biomarkers in the progression of DKD. Methods: A cross-sectional study of 1,043 plasma metabolites by untargeted LC/MS among 89 participants identified associations between proteinuria severity and metabolites difference. Pathway analysis from differently expressed metabolites was used to determine perturbed metabolism pathways. The results were replicated in an independent, cross-sectional cohort of 83 individuals. Correlation and prediction values were used to examine the association between plasma metabolites level and proteinuria amount. Results: Diabetes, and diabetic kidney disease with different ranges of proteinuria have shown different metabolites patterns. Cysteine and methionine metabolism pathway, and Taurine and hypotaurine metabolism pathway were distinguishable in the existence of DKD in DC (diabetes controls without kidney disease), and DKD with different ranges of proteinuria. Two interesting tetrapeptides (Asn-Met-Cys-Ser and Asn-Cys-Pro-Pro) circulating levels were elevated with the DKD proteinuria progression. Conclusions: These findings underscore that serum metabolomics provide us biochemical perspectives to identify some clinically relevant physiopathologic biomarkers of DKD progression.

14.
Cell Rep ; 39(2): 110672, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35417718

ABSTRACT

Phospholipid biosynthesis plays a role in mediating membrane-to-histone communication that influences metabolic decisions. Upon nutrient deprivation, phospholipid methylation generates a starvation signal in the form of S-adenosylmethionine (SAM) depletion, leading to dynamic changes in histone methylation. Here we show that the SAM-responsive methylation of H3K36 is critical for metabolic adaptation to nutrient starvation in the budding yeast Saccharomyces cerevisiae. We find that mutants deficient in H3K36 methylation exhibit defects in membrane integrity and pyrimidine metabolism and lose viability quickly under starvation. Adjusting the synthesis of phospholipids potently rewires metabolic pathways for nucleotide synthesis and boosts the production of antioxidants, ameliorating the defects resulting from the loss of H3K36 methylation. We further demonstrate that H3K36 methylation reciprocally regulates phospholipid synthesis by influencing redox balance. Our study illustrates an adaptive mechanism whereby phospholipid synthesis entails a histone modification to reprogram metabolism for adaptation in a eukaryotic model organism.


Subject(s)
Histones , Saccharomyces cerevisiae Proteins , Histones/metabolism , Methylation , Phosphatidylcholines/metabolism , Phospholipids/metabolism , S-Adenosylmethionine/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
15.
Nat Metab ; 4(2): 239-253, 2022 02.
Article in English | MEDLINE | ID: mdl-35145325

ABSTRACT

Tumors can reprogram the functions of metabolic enzymes to fuel malignant growth; however, beyond their conventional functions, key metabolic enzymes have not been found to directly govern cell mitosis. Here, we report that glutamine synthetase (GS) promotes cell proliferation by licensing mitotic progression independently of its metabolic function. GS depletion, but not impairment of its enzymatic activity, results in mitotic arrest and multinucleation across multiple lung and liver cancer cell lines, patient-derived organoids and xenografted tumors. Mechanistically, GS directly interacts with the nuclear pore protein NUP88 to prevent its binding to CDC20. Such interaction licenses activation of the CDC20-mediated anaphase-promoting complex or cyclosome to ensure proper metaphase-to-anaphase transition. In addition, GS is overexpressed in human non-small cell lung cancer and its depletion reduces tumor growth in mice and increases the efficacy of microtubule-targeted chemotherapy. Our findings highlight a moonlighting function of GS in governing mitosis and illustrate how an essential metabolic enzyme promotes cell proliferation and tumor development, beyond its main metabolic function.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Cell Cycle Proteins/metabolism , Cell Proliferation , Glutamate-Ammonia Ligase , Humans , Mice , Mitosis
16.
Immunity ; 54(8): 1728-1744.e7, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34343498

ABSTRACT

Inflammatory bowel disease (IBD) mainly includes Crohn's disease (CD) and ulcerative colitis (UC). Immune disorders play an essential role in the pathogenesis of these two IBDs, but the differences in the immune microenvironment of the colon and their underlying mechanisms remain poorly investigated. Here we examined the immunological features and metabolic microenvironment of untreated individuals with IBD by multiomics analyses. Modulation of CD-specific metabolites, particularly reduced selenium, can obviously shape type 1 T helper (Th1) cell differentiation, which is specifically enriched in CD. Selenium supplementation suppressed the symptoms and onset of CD and Th1 cell differentiation via selenoprotein W (SELW)-mediated cellular reactive oxygen species scavenging. SELW promoted purine salvage pathways and inhibited one-carbon metabolism by recruiting an E3 ubiquitin ligase, tripartite motif-containing protein 21, which controlled the stability of serine hydroxymethyltransferase 2. Our work highlights selenium as an essential regulator of T cell responses and potential therapeutic targets in CD.


Subject(s)
Antioxidants/pharmacology , Crohn Disease/drug therapy , Crohn Disease/immunology , Selenium/pharmacology , Selenoprotein W/metabolism , Th1 Cells/cytology , Cell Differentiation/immunology , Cell Polarity , Colon/immunology , Colon/pathology , Glycine Hydroxymethyltransferase/metabolism , Humans , Reactive Oxygen Species/metabolism , Ribonucleoproteins/metabolism , Th1 Cells/immunology , Ubiquitin-Protein Ligases/metabolism
17.
EMBO J ; 40(11): e106771, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33909912

ABSTRACT

Chemical compounds have recently been introduced as alternative and non-integrating inducers of pluripotent stem cell fate. However, chemical reprogramming is hampered by low efficiency and the molecular mechanisms remain poorly characterized. Here, we show that inhibition of spleen tyrosine kinase (Syk) by R406 significantly promotes mouse chemical reprogramming. Mechanistically, R406 alleviates Syk / calcineurin (Cn) / nuclear factor of activated T cells (NFAT) signaling-mediated suppression of glycine, serine, and threonine metabolic genes and dependent metabolites. Syk inhibition upregulates glycine level and downstream transsulfuration cysteine biosynthesis, promoting cysteine metabolism and cellular hydrogen sulfide (H2 S) production. This metabolic rewiring decreased oxidative phosphorylation and ROS levels, enhancing chemical reprogramming. In sum, our study identifies Syk-Cn-NFAT signaling axis as a new barrier of chemical reprogramming and suggests metabolic rewiring and redox homeostasis as important opportunities for controlling cell fates.


Subject(s)
Fibroblasts/metabolism , Hydrogen Sulfide/metabolism , Syk Kinase/antagonists & inhibitors , Animals , Calcineurin/metabolism , Cells, Cultured , Cysteine/metabolism , Fibroblasts/drug effects , Glycine/metabolism , Mice , NFATC Transcription Factors/metabolism , Oxazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Reactive Oxygen Species/metabolism , Signal Transduction
18.
J Biol Chem ; 295(33): 11928-11937, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32636300

ABSTRACT

Cardiolipin (CL) is the signature phospholipid of mitochondrial membranes, where it is synthesized locally and plays an important role in mitochondrial bioenergetics. Previous studies in the yeast model have indicated that CL is required for optimal iron homeostasis, which is disrupted by a mechanism not yet determined in the yeast CL mutant, crd1Δ. This finding has implications for the severe genetic disorder, Barth syndrome (BTHS), in which CL metabolism is perturbed because of mutations in the CL-remodeling enzyme, tafazzin. Here, we investigate the effects of tafazzin deficiency on iron homeostasis in the mouse myoblast model of BTHS tafazzin knockout (TAZ-KO) cells. Similarly to CL-deficient yeast cells, TAZ-KO cells exhibited elevated sensitivity to iron, as well as to H2O2, which was alleviated by the iron chelator deferoxamine. TAZ-KO cells exhibited increased expression of the iron exporter ferroportin and decreased expression of the iron importer transferrin receptor, likely reflecting a regulatory response to elevated mitochondrial iron. Reduced activities of mitochondrial iron-sulfur cluster enzymes suggested that the mechanism underlying perturbation of iron homeostasis was defective iron-sulfur biogenesis. We observed decreased levels of Yfh1/frataxin, an essential component of the iron-sulfur biogenesis machinery, in mitochondria from TAZ-KO mouse cells and in CL-deleted yeast crd1Δ cells, indicating that the role of CL in iron-sulfur biogenesis is highly conserved. Yeast crd1Δ cells exhibited decreased processing of the Yfh1 precursor upon import, which likely contributes to the iron homeostasis defects. Implications for understanding the pathogenesis of BTHS are discussed.


Subject(s)
Barth Syndrome/metabolism , Cardiolipins/metabolism , Iron-Binding Proteins/metabolism , Iron/metabolism , Myoblasts/metabolism , Acyltransferases , Animals , Barth Syndrome/genetics , Barth Syndrome/pathology , Cardiolipins/genetics , Cell Line , Gene Deletion , Gene Knockout Techniques , Iron-Binding Proteins/genetics , Mice , Myoblasts/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Frataxin
19.
Mol Cell ; 78(2): 210-223.e8, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32208170

ABSTRACT

S-adenosylmethionine (SAM) is the methyl-donor substrate for DNA and histone methyltransferases that regulate epigenetic states and subsequent gene expression. This metabolism-epigenome link sensitizes chromatin methylation to altered SAM abundance, yet the mechanisms that allow organisms to adapt and protect epigenetic information during life-experienced fluctuations in SAM availability are unknown. We identified a robust response to SAM depletion that is highlighted by preferential cytoplasmic and nuclear mono-methylation of H3 Lys 9 (H3K9) at the expense of broad losses in histone di- and tri-methylation. Under SAM-depleted conditions, H3K9 mono-methylation preserves heterochromatin stability and supports global epigenetic persistence upon metabolic recovery. This unique chromatin response was robust across the mouse lifespan and correlated with improved metabolic health, supporting a significant role for epigenetic adaptation to SAM depletion in vivo. Together, these studies provide evidence for an adaptive response that enables epigenetic persistence to metabolic stress.


Subject(s)
DNA Methylation/genetics , Heterochromatin/genetics , Metabolome/genetics , S-Adenosylmethionine/metabolism , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatin/genetics , Cytoplasm/genetics , Cytoplasm/metabolism , Epigenesis, Genetic/genetics , Gene Expression Regulation/genetics , HCT116 Cells , Heterochromatin/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Humans , Methionine/genetics , Mice , Protein Processing, Post-Translational/genetics , Proteomics/methods
20.
Science ; 365(6460): 1428-1434, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31604271

ABSTRACT

Circadian rhythmicity is a defining feature of mammalian metabolism that synchronizes metabolic processes to day-night light cycles. Here, we show that the intestinal microbiota programs diurnal metabolic rhythms in the mouse small intestine through histone deacetylase 3 (HDAC3). The microbiota induced expression of intestinal epithelial HDAC3, which was recruited rhythmically to chromatin, and produced synchronized diurnal oscillations in histone acetylation, metabolic gene expression, and nutrient uptake. HDAC3 also functioned noncanonically to coactivate estrogen-related receptor α, inducing microbiota-dependent rhythmic transcription of the lipid transporter gene Cd36 and promoting lipid absorption and diet-induced obesity. Our findings reveal that HDAC3 integrates microbial and circadian cues for regulation of diurnal metabolic rhythms and pinpoint a key mechanism by which the microbiota controls host metabolism.


Subject(s)
Circadian Rhythm , Epithelial Cells/metabolism , Gastrointestinal Microbiome , Histone Deacetylases/metabolism , Intestine, Small/metabolism , Acetylation , Animals , CD36 Antigens/metabolism , Chromatin/metabolism , Colon , Diet, High-Fat , Germ-Free Life , Intestine, Small/cytology , Jet Lag Syndrome , Lipid Metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Receptors, Estrogen/metabolism , ERRalpha Estrogen-Related Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...